

Software-Defined Perimeter Working Group

Software-Defined Perimeter
(SDP) Specification 2.0

June TBD

The permanent and official location for Software Defined Perimeter Working Group is
https://cloudsecurityalliance.org/research/working-groups/software-defined-perimeter

© 2021 Cloud Security Alliance – All Rights Reserved. You may download, store, display on your computer,
view, print, and link to the Cloud Security Alliance at https://cloudsecurityalliance.org subject to the
following: (a) the draft may be used solely for your personal, informational, non-commercial use; (b) the
draft may not be modified or altered in any way; (c) the draft may not be redistributed; and (d) the
trademark, copyright or other notices may not be removed. You may quote portions of the draft as
permitted by the Fair Use provisions of the United States Copyright Act, provided that you attribute the
portions to the Cloud Security Alliance

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 2 of 33

https://cloudsecurityalliance.org/research/working-groups/software-defined-perimeter

0.1 Document Project Plan
Start Date End Date
Feb 15, 2019 Start

Agree Outline /Assign Sections
Revised Outlines /Assign Sections and Writing
Writing
Writing/Review - Extension
Writing/Review - Extension
External Peer Review
Marketing Publishing

0.1.5
To Do’s / Assignments

0.2 Team / Contributor Composition
Contributors Areas of Contribution

Juanita Koilpillai
jkoilpillai@waverleylabs.com Entire Initial v2 - Initial review and reorganization of entire v1 document to start v2

SDP Component descriptions, SDP Protocol section updates, Updated diagrams, JSON edits,
Onboarding example.
Entire document - Made and accepted edits and minor rewrites throughout.

Jason Garbis
jason.garbis@appgate.com SDP Deployment models and Workflow table changes.

SPA - broader usage section
rework mTLS and IKE section

Michael Roza
Michael.e.roza@gmail.com Entire Initial v2 - Initial review and reorganization of entire v1 document to start v2,

SDP Protocol section - Identification of errors, inconsistencies, and recommendations for
improvement and changes to sequencing images and message text.
Summary section - outline.
SDP Deployment models and Workflow table changes
Entire document - Made and accepted edits and minor rewrites throughout.

Bob Flores
bob.flores@applicology.com Initial review and reorganization to start v2

Junaid Islam
junaid@xqmsg.com Initial review and reorganization to start v2

Daniel Bailey
dbailey@waverleylabs.com SDP Component descriptions. SDP Protocol section and workflow. SPA clarification.

Onboarding example.

Benfeng Chen
bfchen@clouddeep.ai SDP Protocol and SPA section update. Updated the SDP protocol workflow for network

invisibility, as well as the cryptographic algorithms in SPA messages for security.

Eitan Bremler
eitan.bremler@safe-t.com Review of SDP architecture and components, Controller, Initiating Hosts, Accepting Hosts,

Gateways, Deployment Models

Ahmed Refaey Hussein
ahmed.hussein@manhattan.edu SDP - SDN - NFV and cloud deployments

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 3 of 33

mailto:jkoilpillai@waverleylabs.com
mailto:jason.garbis@appgate.com
mailto:Michael.e.roza@gmail.com
mailto:bob.flores@applicology.com
mailto:junaid@xqmsg.com
mailto:dbailey@waverleylabs.com
mailto:eitan.bremler@safe-t.com
mailto:ahmed.hussein@manhattan.edu

Acknowledgments
Version 2.0

Lead Authors

Juanita Koilpillai
Jason Garbis

Contributors

Junaid Islam
Bob Flores
Daniel Bailey
Benfeng Chen
Eitan Bremler
Michael Roza

CSA Analysts

Shamun Mahmud

Version 1.0 Contributors

Brent Bilger, Alan Boehme, Bob Flores, Zvi Guterman, Mark Hoover, Michaela Iorga, Junaid Islam, Marc
Kolenko, Juanita Koilpillai, Gabor Lengyel, Gram Ludlow, Ted Schroeder and Jeff Schweitzer

CSA Analysts

Shamun Mahmud

The Software-Defined Perimeter (SDP) and Zero Trust Working Group is a Cloud Security Alliance (CSA)

a research working group will advocate for and promote the adoption of Zero Trust security principles, providing

practical and technically sound guidance on how organizations can and should approach this for their cloud and

non-cloud environments. This group will build on and leverage the NIST Zero Trust research and approach. The group

will also promote SDP as a recommended architecture for achieving Zero Trust benefits and principles. It will revise

and expand the SDP specification, to capture and codify the knowledge gained from experience.

While promoting and recommending SDP, the group will take an inclusive approach to alternative security

architectures and objectively support them as long as they’re aligned with the Zero Trust philosophy.

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 4 of 33

Table of Contents
Acknowledgments 4

Introduction 7

Purpose 7

Scope 7

Audience 7

Design Objectives 8

SDP Concept 8

SDP Architecture and Components 9

SDP Controller 10

SDP Initiating Hosts (and SDP Clients) 11

SDP Accepting Hosts (and Services) 12

SDP Gateways 12

SDP Deployment Models 13

SDP Workflow 14

Onboarding 15

Single Packet Authorization (SPA) 16

SPA Message Format 17

SPA as a Secure, Self-Contained, Connectionless Message Transmission Protocol 18

SDP in relation to SDN & NFV 18

Mutual Transport Layer Authentication Between Components 19

Device Validation 20

SDP Protocol 21

AH-Controller Protocol 21

AH to Controller Sequence Diagram 21

a. SPA 22

b. Login Request Message 22

c. Login Response Message 22

d. Logout Request Message 23

e. Keep-Alive Message 23

f. AH Service Messages 23

g. Reserved for Private Use 23

IH-Controller Protocol 23

IH to Controller Sequence Diagram 24

a. SPA 24

b. Open TCP Connection 25

c. Login Request Message 25

d. Login Response Message 25

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 5 of 33

e. Keep-Alive Message 25

h. IH Service Message 25

i. IH Authentication Message 26

j. Reserved for Private Use 26

IH-AH Protocol 26

IH to AH Sequence Diagram 27

a. SPA 27

b. Open TCP Connection 28

k. Open Connection Request Message 28

l. Open Connection Type 28

m. Open Connection Response Message 28

n. Data Message 28

o. Connection Closed Message 28

p. User-Defined Message 29

Logging 29

Fields of a log message 29

Operations Logs 29

Security/Connection Logs 31

Summary 32

References 33

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 6 of 33

Introduction
The Software-Defined Perimeter (SDP) architecture provides the ability to dynamically deploy network

security perimeter functionality where needed in order to isolate applications and services deployed and

accessed on unsecured networks. SDP is designed to provide an on-demand, dynamically provisioned, trusted

overlay network isolated to mitigate network-based attacks. An SDP implementation hides assets from

unauthorized entities, establishes trust prior to allowing connections, and manages the system via separate

control and data planes. With SDP, organizations can achieve the goals of Zero Trust, improving their security

effectiveness and resiliency by moving away from traditional failed perimeter-centric security models.

Purpose

This document updates the Cloud Security Alliance (CSA) Software-Defined Perimeter (SDP) Specification.

Version 1.0 was written by the Software Defined Perimeter Working Group and published in April 2014.

We believe the original specification was sound and provided a solid architectural and conceptual foundation

for securing connectivity. However, it was largely silent on several areas, including SDP access authorization

policies, onboarding, and securing non-person entities. In addition, in recent years, the information security

industry has embraced the principles espoused in the SDP architecture, which are included in the broad trend

of Zero Trust. SDP enhances Zero Trust implementations. This revised version of the SDP specification is

expanded and enhanced to include additions, clarifications, and extensions.

Note that this version builds on additional documentation that the working group has published since version

1, specifically the SDP Glossary and the SDP Architecture Guide. Links to both of these documents are

included in the References section of this document.

Scope
This document specifies the architectural components, interactions, and basic secure communications
protocol for Software-Defined Perimeter (SDP) implementations. It focuses on the control plane interactions
to enable secure connectivity into the secure perimeter and a data plane describing the enforcement of
secure connectivity between initiating hosts (servers, user devices, services) and accepting hosts (servers,
devices, services).

Audience
The target audiences for this document are

● Solution architects and security leaders who are deploying Zero Trust and SDP products in their
enterprise

● Vendors or technology providers who are implementing Zero Trust with an SDP architecture within
their products or solutions

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 7 of 33

Design Objectives
SDP aims to give network providers and application owners the ability to deploy dynamic (“software-defined”)

perimeters to blacken networks and prevent unauthorized access to the services running on them. SDPs replace

physical appliances with logical components that operate under the organization’s control which shrinks the logical

perimeter to its bare minimum. SDPs enforce the Zero Trust principle of least privilege, providing access to resources

only after device attestation and identity verification, according to access policies.

The design objective of SDP is to provide an effective and readily integrated security architecture for IPv4 and IPv6,

including obfuscation and access control of the Control Plane elements and the resources protected by the

perimeter, as well as the confidentiality and integrity of communication in the Data Plane from the initiating source

to the control plane and the accepting source. The design includes a need-to-know access model that requires

authenticated identities (users) on validated devices to sign in to the perimeter cryptographically. It also blackens

assets while using public infrastructures like the Internet.

SDP’s design provides seamless integration through several layers – integrating security for users, their equipment,
networks, and devices. SDP can be used to secure connections over any IP infrastructure, whether traditional
hardware-based, a newer software-defined network (SDN), or cloud-based. SDP's core capability is that it operates
largely as an encrypted overlay for any type of IP network. It normalizes security layers across heterogeneous
environments, simplifying security and operations.

For cloud infrastructures, SDP integrates security at:
● the network layer where virtualization provides computing, storage, and monitoring1

● the transport layer where cloud APIs tie virtualized assets to resource pools and users
● the session layer where the underlying virtualized infrastructure is managed
● the network access layer where middleware manages application tiers and the application
● the application layer that provides business value to users

As a complement to SDN and NFV, SDP can secure connections over the IP infrastructure SDNs create. In fact, SDP
operates largely as an encrypted overlay for any type of IP network. In this sense, it acts as a homogenizing security
layer, simplifying security and operations.

Based upon feedback and lessons learned from implementations of SDP, this updated specification helps to clarify

access control within the various deployment models defined in the original specification .2

SDP provides an effective alternative for stopping all network-based and cross-domain attacks on applications and

infrastructures requiring invisibility while leveraging public infrastructures like the Internet and the cloud and

‘need-to-know’ access models for secure communications. While existing cybersecurity solutions focus on securing

networks and systems, SDP focuses on securing connectivity and stopping attacks such as DDoS, credential theft etc.

SDP Concept
SDP provides application and enterprise resource owners the ability to deploy perimeter functionality where

2 https://cloudsecurityalliance.org/artifacts/sdp-architecture-guide-v2/

1 See paper on SDP and Network Function Virtualization (NFV) - https://www.waverleylabs.com/resources/publications/

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 8 of 33

https://cloudsecurityalliance.org/artifacts/sdp-architecture-guide-v2/

needed to:

● Securely deploy services onto networks presumed to be compromised.

● Provide remote identities with precisely controlled access to those services across untrusted

networks.

SDPs replace perimeter-based and (often, physical) appliances with logical components that operate under

the control of the application owner. SDPs provide access to application infrastructure only after device

attestation and identity verification via the evaluation of access policies.

The principles behind SDPs are not entirely new. Multiple organizations within the Department of Defense

(DoD) and Intelligence Community (IC) have implemented similar network architectures based on

authentication and authorization prior to network access. Typically used in classified or “high-side” networks

(as defined by the DoD), every server is hidden behind a remote access gateway appliance to which a user

must authenticate before visibility of authorized services is available and access is provided. SDPs leverage the

logical model used in classified networks and incorporate that model into standard workflows (Section 2.4).

In addition, security leaders in the industry have been espousing many of these concepts, most notably

starting with the Jericho Forum in 2004. More recently, Zero Trust, as defined by the US National Institute for

Standards and Technology (NIST), incorporates these principles as well3

SDPs maintain the benefits of the need-to-know model described above but eliminate the disadvantages

of requiring a remote access gateway appliance. SDPs require endpoints to authenticate and be authorized

first before obtaining network access to protected servers and services. Then, encrypted connections are

created in real-time between requesting systems and application infrastructure.

In short, SDPs cryptographically sign resources (users, devices, services) into the perimeter within which services

remain hidden to all unauthorized access.

SDP Architecture and Components
In its simplest form, SDP consists of two logical components: SDP Hosts and SDP Controllers. SDP Hosts can

either initiate connections or accept connections. These actions are managed by interactions with the SDP

Controllers via a secure channel over a control plane. Data is communicated over a separate secure channel in

the data plane. Thus, in SDPs, the control plane is separated from the data plane to enable an architecturally

flexible and highly scalable system. In addition, all of the components can be redundant for scale or uptime

purposes. SDP hosts (initiating hosts or accepting hosts) connect to the SDP controller, which is an appliance

or process that ensures users are authenticated and authorized, devices are validated, secure communications

are established, and user and management traffic on a network remain separate.

3 See the NIST Zero Trust Architecture document - SP 800-207 https://csrc.nist.gov/publications/detail/sp/800-207/final
© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 9 of 33

https://csrc.nist.gov/publications/detail/sp/800-207/final

Figure 1: SDP Architecture (previously published by CSA in Software Defined Perimeter and Zero Trust)4

The architecture of the SDP consists of the following components:

● SDP Controller - this component is designed to manage all authentication and access flows. It is

essentially the “brain” of the solution where access policies are defined and evaluated. It acts as a

Zero Trust Policy Decision Point (PDP). The SDP Controller is also responsible for connecting to the

authentication solutions (Identity providers, multi-factor authentication, etc.) to orchestrate the

user’s authentication and authorization.

● Initiating Hosts (IH) on which SDP Users typically reside - these accessing entities can be users, and

NPE’s (Non-Person Entities) such hardware (end-user devices, or servers), network devices (for5

connecting networks), software applications, or services. An SDP user can use an SDP client or

browser to connect.

● Accepting Hosts (on which an SDP Services typically resides) - these are applications or resources

being accessed and protected by the SDP. In the Client-to-Gateway SDP model . For example, the6

Accepting Host takes the form of an SDP Gateway that typically sits in front of the resources being

accessed.

All of the components can be located in various locations (internet, cloud, on-premises) and can be deployed

in a redundant architecture for scale or uptime purposes.

SDP is a connection-oriented protocol, securing network deployment topologies that include connections

between Client to Server, Client to Gateway, Client to Server to Client, Gateway to Gateway, and Server to

Server.. Details on the various deployment connection models and architecture are introduced in Figure 3

below and are detailed in the SDP Architecture Guide. It shows the multiple configurations of the SDP

Gateway within each of the deployment models.

SDP Controller

The SDP Controller is a policy definition, verification, and decision mechanism (a Zero Trust Policy Decision

Point) that maintains information about which users/groups from which devices have access and

6 See SDP Architecture guide for reference to the various SDP models.

5 A non-person entity (NPE) is an entity with a digital identity that acts in cyberspace, but is not a human actor. This can include hardware devices,
software applications, and information artifacts.

4 https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-and-zero-trust/ page 6

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 10 of 33

permission to which organization’s applications (on-premises or in the cloud). Depending on the

deployment model, it determines which SDP Hosts can communicate with each other.

Once a user (on an IH) connects to the Controller, the Controller authenticates the user and grants access

only to the services (via the AHs) allowed to the user based on their context (including identity and device

attributes).

In order to authenticate the user, the Controller may perform the authentication using an internal user

table or connect to a third-party Identity and Access Management (IAM) service, Multi-factor

Authentication (MFA), or Identity Solution (on-premises or in the cloud). Authentication is typically done

based on user type and identity; for example, employees may be authenticated via an Identity Provider,

while contractors may be authenticated by credentials stored in a database.

In order to authorize the user access to a service, the Controller may use an internal user-to-service

mapping or connection to a third-party service such as LDAP, Active Directory, or authorization solution

(on-premises or in the cloud). Authorization is typically done by user roles to the services the user can

access but can be more fine-grained, based on user or device attributes, or even the actual data element

or data flow that the user is authorized to access (e.g. OAuth or WebAuthN). In effect, the access policies

maintained by the SDP Controller can be informed by other organizational constructs such as enterprise

service directories and identity stores. In this fashion, the Controller is enforcing the type of dynamic Zero

Trust policies that NIST identifies as a Zero Trust tenet.

In addition, the Controller can obtain information from external services, such as geo-location or host

checking services, to further validate the user (on an IH). In addition, the controller can provide contextual

information to other network components, relating to the user’s failing authentication, or accessing

sensitive services.

Later in a user session, the SDP controller can leverage authentication and authorization mechanisms to

force step-up authentication for the user, disconnect a user based on parameters such as session timeout,

geo-location changes, or security posture changes. The SDP controller closely aligns with the Zero Trust

Policy Decision Point (PDP) concept.

The SDP Controller may reside in the cloud or on-premises, depending on the SDP solution.

SDP Controllers are protected by an isolation mechanism using the single-packet authorization (SPA) protocol,

or another variant , making the Controllers invisible and inaccessible to unauthorized users and devices. This

mechanism may be provided by an SDP Gateway in front of a Controller, or natively within the Controller

itself.

SDP Initiating Hosts (and SDP Clients)
SDP initiating Hosts (IHs) communicate with the SDP Controller in order to begin the process of accessing

protected corporate resources via Accepting Hosts.

The Controller typically requires that the IH provide its information such as user identity, hardware or

software inventory, device health as part of the authentication phase and before providing any access. The

SDP Controller must also provide some mechanism (e.g., credentials) for IH to establish secure

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 11 of 33

communications with the AH.

The IH can be in the form of a client application installed on the end-user’s machine or can be in the form of a

web browser. Using a client application provides deeper capabilities such as host checking (device posture

checks), traffic routing, and more streamlined authentication.

One of the most important benefits of SDP client software on the Initiating Host (IH) is that the SDP client

application will initiate connections to the SDP using the single packet authorization (SPA) protocol (discussed

in depth later in this document).

The IH can be a human user (e.g., employee or contractor), an application (e.g., thick client), or an IOT device

(e.g., remote water meter). In this latter example, the identity is a nonhuman identity but is nonetheless

authenticated and authorized in a similar fashion.

SDP Accepting Hosts (and Services)
Accepting Hosts (and services) are any corporate or backend resource to which a user might wish to connect

and to which the responsible enterprise needs to control access. Services can be located on-premises, in a

private cloud, public cloud, etc.

An AH (as a Gateway or service) is not limited to being only a web application; it can be any TCP or UDP

application - SSH, RDP, SFTP, Web, SMB, proprietary applications, fat client application, etc.

By default, all network access to an AH is blocked and can only be accessed by authenticated users. Control

plane traffic to the AHs should be allowed, for example, between SDP Controllers and Gateways (depending

on the deployment architecture).

SDP Gateways
An SDP Gateway provides isolation and is the component (software appliance or agent) that is the AH, acting

as the frontend for the protected services and enforcing the authentication and authorization rules

maintained by the SDP Controller. (Note that depending on the SDP deployment model, discussed below, the

AH may be a separate component or may be part of the service being accessed)

The SDP gateway receives the control information from the SDP controller, and it accepts connections from an

IH only after instructed to do so by the SDP Controller.

In conjunction with the SDP controller, the SDP Gateway provides authorized IHs (users and devices) with

access to AHs (protected processes and services).

The SDP Gateway essentially works as a reverse proxy or a network firewall as it receives traffic from the IH

and passes it to the protected backend service. The response from the backend service is then sent back to

the IH.

The SDP gateway resides on or near the AH and can also reside on or near the IH, the SDP Controller, or both

depending on the isolation and enforcement requirements. The gateway can include a firewall or access

control list. The gateway can also enact monitoring, logging, and reporting on these connections.

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 12 of 33

In some deployment models, the SDP Gateway can be integrated with the AH (or service) to accomplish

isolation and access enforcement for ONLY authorized users to a specific service.

In addition to the isolation mechanism, the SDP Gateway can also enforce policies and align with the Zero

Trust Policy Enforcement Point (PEP) concept.

SDP Deployment Models7

SDP connects clients (humans or non-person entities) to resources (depicted as servers in the diagrams below).
These resources may be of any type, as long as they are addressable across a network. They may be services running
on physical or virtual servers, may be services running on IaaS or PaaS platforms, or may be containerized services.

This section briefly introduces the six SDP deployment models. While they have different network topologies,
logically, they provide the same benefits - enforcing access to protected resources. For an introduction to these
deployment models, see the SDP Architecture Guide.

Note that in the diagrams below, the blue lines indicate network connections secured by mTLS. The gray lines
indicate network connections utilizing the native application protocol, which may or may not be encrypted.

When one or more servers must be protected behind a gateway, the
connections between client/ IH and the AH (gateway) are secured
regardless of underlying network topology. In this model, the Gateway
is hidden and within the secure perimeter. This model doesn’t require
any changes to protected servers.
When an organization needs to secure connections end-to-end, this model
combines a server and AH (gateway) in a single host. In this model, the
server is hidden and within the secure perimeter. In this model, the server
platform must be able to have the Gateway software deployed onto it.

This model is best suited for Internet of Things (IoT) and Virtual Machine
(VM) environments and ensures that all connections between servers are
encrypted regardless of the underlying network or IP infrastructure. In this
model, all servers are hidden and within the secure perimeter.

In some instances, peer-to-peer traffic passes through an intermediary
server, such as in IP phone, chat, and video conferencing services. In this
model, the server is hidden and within the perimeter.

This model is a variation of Client-to-Server-to-Client, above. This model
supports peer-to-peer network protocols requiring clients to connect
directly to one another while enforcing SDP access policies. In this model,
the gateway is hidden and within the perimeter.

The Gateway-to-Gateway model was not included in the initial publication
of SDP Specification 1.0. This model is well-suited for certain Internet of
Things (IoT) environments. In this model, the gateways are hidden and
within the perimeter.

Figure 2 - SDP Deployment Models

7 CSA Software-Defined Perimeter ARCHITECTURE GUIDE, May 2019, pages 14 to 18
© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 13 of 33

SDP Workflow
The SDP Protocol has the following general workflow (depicted in Figure 4) to secure connections between the IH
and AH hosts. This workflow is representative, although specifics will vary between different implementations.
Each of the steps is discussed in further detail below.

Figure 3 - SDP Workflow
Onboarding

Step Onboarding Connection Flow

1 One or more SDP Controllers are brought online and connected to the appropriate optional

authentication and authorization services (e.g., PKI Issuing Certificate Authority service, device

attestation, geolocation, SAML, OpenID, OAuth, LDAP, Kerberos, multi-factor authentication, and other

such services).

2 One or more AHs are brought online, depicted as SDP Gateways. These Gateways connect to and

authenticate to the Controllers. However, they do not acknowledge communication from any other Host

and will not respond to any non-provisioned request.

3 One or more clients on IHs are onboarded and each user (or NPE) is authenticated by the SDP Controller.

Note: The onboarding process is distinct from the user authentication process in that users are only onboarded once,
but will authenticate and be authorized for each subsequent connection.

Subsequent Connection Flow

Step Subsequent Connection Flow

1 When an onboarded IH returns online (e.g. after device reboot, or when user initiates a connection), it
connects to and authenticates through the SDP Controller

2 After authenticating the IH (in some cases with its corresponding identity provider) the SDP Controllers

determine a list of AHs with which the IH is authorized to communicate.

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 14 of 33

The SDP Controller instructs the AHs to accept communication from the IH as well as any information
that defines connectivity between users, devices, and services required for two-way encrypted
communications.

The SDP Controller gives the IH the list of authorized AHs as well as any optional information required for
two-way encrypted communications.

3 The IH uses a single packet authorization (SPA) protocol to initiate a connection to each authorized AH
that verifies the information in the SPA (for enforcement). The IH then creates a mutual TLS connection
to those AHs.8

Onboarding
The on-boarding of SDP Controllers, one or more IHs, and AHs and users varies depending on the deployment

models discussed in Figure 3. Methods could include Chef or Puppet or Terraform, or their hosting service

equivalents (e.g., RightScale, AWS CloudFormation, etc.).

As described in the workflow above (Figure 3), the SDP is deployed and configured, and SDP Controllers and

Accepting Hosts are brought online.

The following sequence is a sample onboarding workflow for users on IHs that authenticate with an external9

Identity Provider (IdP).

Figure 5 - Onboarding (IdP Scenario)

Note - This example uses Identify Provider information for the onboarding users. Onboarding systems could

include multiple authentication factors, such as MFA and validation of device attributes (e.g.,

enterprise-deployed certificates or endpoint management software) as part of the onboarding process.

In this sample workflow, the IH uses a client (SDP Client in the figure) to negotiate with the Identity Provider

(IdP). Note that for some SDP models, the SDP Controller will have a trust relationship with the IdP, for

example, to validate a SAML token forwarded to it by the client.

9 Based upon SDP Open Source Reference Implementation - https://www.waverleylabs.com/open-source-sdp/

8 Steps 1 and 2 in this table may not be executed each time an IH needs to make a connection to an AH. Depending on the implementation, an IH that was
previously authenticated by the Controller and still has valid access can just use SPA to connect to the AH. This model ensures that the IH can still connect in the
event that the Controller is offline.

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 15 of 33

Single Packet Authorization (SPA)
One of the core principles of SDP is that resources must be inaccessible to unauthorized entities. This is enforced by
requiring that entities must be cryptographically authorized to connect with any SDP component. This improves the
security and resiliency of SDPs-- unauthorized entities are not able to establish a network connection with an SDP
component, and therefore cannot attempt to exploit a vulnerability, brute force a login attempt, or utilize stolen
credentials. This is in stark contrast to traditional remote-access solutions, such as VPNs, which are exposed to all
malicious actors on the internet.

Validation of an incoming SPA packet is computationally lightweight, improving the resiliency of SDP systems against
DDoS attacks (as mentioned in the SDP Cloud Security Alliance (CSA), SDP as a DDoS Defense Mechanism
whitepaper).

The mechanism that SDP uses for this is Single Packet Authorization (SPA). SPA is based on an RFC 4226 HMAC-based
One-Time Password “HOTP” , which is included in the SPA packet as described below.10

Single Packet Authorization (SPA) initiates communication for all of the following: IH-Controller, AH-

Controller, and IH-AH. The SPA packet initiates using either UDP or TCP protocols depending on the

chosen implementation.

UDP-based SPA provides the following security benefits to the SPA-protected server:

● Blackens the server: The server will not respond to any attempted connections from any remote

system until they have provided an authentic SPA that is valid for that SDP system. Specifically,

the host will not respond to a TCP SYN, thereby avoiding the disclosure of any information to a

potential attacker.

● Mitigates Denial of Service attacks on TLS: Internet-facing servers running the HTTPS protocol are

highly susceptible to Denial-of-Service (DoS) attacks. SPA mitigates these attacks because it allows

the server to reject unauthorized connection attempts before incurring the overhead of establishing

a TCP or TLS connection and therefore allowing authorized connections during and in spite of DoS

attacks.

● Attack detection: The first packet to an AH from any other host must be a SPA packet. If an AH

receives any other packet, it should be viewed as an attack. Therefore, the SPA enables the SDP to

determine an attack based on a single malicious packet.

TCP-based SPA obtains some of these benefits, to a lesser degree than UDP-based SPA. Specifically, an SDP

component using TCP SPA will expose an open port to all remote (and potentially malicious) users, so the

server will not be blackened. The server will also be partially subject to a DDoS attack -- it will likely permit

the establishment of a TCP connection from any remote IP address, and then perform SPA validation prior

to creating a TLS connection. A TCP connection is much less resource-intensive than a TLS connection, but

it does consume server resources and puts the server at some level of risk of DDoS. Finally, using SPA over

TCP will permit the server to detect an attack based on an invalid SPA packet, but only after the TCP

10 See https://tools.ietf.org/html/rfc4226
© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 16 of 33

https://tools.ietf.org/html/rfc4226

connection is established, therefore consuming server resources.

Note that the recommended SPA message format, below, has been updated since v1 of the SDP

specification, to improve the security and resiliency of the protocol.

SPA Message Format
While SPA message formats may differ between SDP implementations, all SDP systems must support SPA as the
mechanism for initiating connections between components. Note that the use of SPA requires that SPA packet
creators and recipients have a shared root of trust, as each SPA packet requires a shared secret in order to construct
a valid SPA packet. The establishment of this root of trust -- namely, how the shared secret is securely communicated
to SDP components - is implementation-dependent, and is outside the scope of this specification. Typically this
information is included in the onboarding process for IHs and AHs.
DRAFT May 9 for validation

ClientID 32-bit numeric identifier, assigned per user-device pair. This field is optional, and used for SPA schemes that
distinguish on a per-client basis

Nonce 16-bit random data field prevents replay attack by avoiding SPA packet reuse

Timestamp Prevents servicing outdated SPA packets, by ensuring a short time period of validity (example 15 to 30
seconds).

Source IP
Address

The publicly visible IP address of the initiating host. This is included so that the Accepting Host does not rely
on the source IP address in the packet header, which is easily modified en route. The IH must be able to
obtain the IP address for use by the AH as the origination of packets.

Message Type This field is optional - it may be used to inform the recipient what type of message to expect from the IH
after the connection is established.

Message
String

This field is optional and will be dependent on the Message Type field.
For example, this field could be used to specify the services that an IH will be requesting if known at
connection time.

HOTP This hashed one-time-password is generated by an algorithm such as RFC 4226, based on a shared secret.
The use of an OTP is required in SPA packets for authenticity; other OTP algorithms can be substituted with
the overarching goal of providing authenticity of the SPA packet.

Counter The counter is a 64-bit unsigned integer intended to be synchronized between communicating pairs. In RFC
4226, this is done via a “look-ahead window” (because the typical use case for RFC 4226 is a hardware OTP
token). However, for the SDP protocol, the counter can be sent in the SDP packet obviating the need for a
look-ahead window and the potential for the communicating pair to be out of sync. Note that the counter
does not need to be kept secret, however AHs should have mechanisms in place to avoid malicious use of
very large counters, potentially denying service to (legitimate) IHs sending lower counter values.
This field is optional, depending on the OTP algorithm chosen.

HMAC Calculated over all fields above. Algorithm choices are SHA256 (recommended), SHA384, SHA512, and
SM3. The HMAC is calculated using a shared (secret) seed. The HMAC is calculated over all prior fields of
the message and then used by the AH to verify message integrity. The HMAC validation is computationally
lightweight, and therefore can be used to provide resiliency against DoS attacks. Any SPA packets with
invalid HMACs will be immediately discarded.

Figure 6: SPA Message Scheme

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 17 of 33

Note that other SPA options may include additional encryption, for example using the IH’s private key (for
non-repudiation), or the AH’s public key (for confidentiality). However, asymmetric encryption is computationally
expensive, and should only be used after a lighter-weight validation mechanism (such as a simple HMAC), in order to
keep the AH resilient to DoS attacks.

SPA as a Secure, Self-Contained, Connectionless Message Transmission
Protocol

One interesting “side” use case for SPA within an SDP system is the ability to use SPA packets as the means for
actually transmitting data from a remote element. Because the SPA packet is based on a shared secret, the recipient
can trust that the data contained within it has been issued by a valid SDP client.

If the SPA seed is unique to a given client (identified by the ClientID in the SPA packet), then the SPA Message String
field can be used to transmit meaningful data by the client. This doesn’t require any further processing or policy
evaluation, and doesn’t require the establishment of a TCP or TLS connection.

This could be useful for a set of distributed IoT sensors, for example, which need to transmit small amounts of data
regularly . Embedding the data within a SPA packet permits these devices to accomplish this without incurring the
overhead of establishing a TCP and TLS connection. Of course, this mechanism has some downsides. The recipient
(accepting host) must be expecting this data, and because this is a unidirectional transmission, the sender receives
no verification that the data was actually received with the ‘fire and forget’ SPA packet transmission. Nonetheless,
this could be a useful way to apply SPA for some environments as long as the data is not significant and/or critical.

SDP in relation to SDN & NFV

In cloud computing environments, Software Defined Network (SDN) and Network Function Virtualization

(NFV) technologies efficiently address challenges both at the IH environment (frontend) and AH11

environment (backend) while providing the benefits of scaling on-demand, pay-as-you-go, and providing

resources as services. SDNs and NFVs pave the way for adopting and orchestrating heterogeneous network

routing for better utilization of resources (wireless and computing resources). The IH environment challenges

are related to the communication aspects of the access layer of the wireless mobile network or edge

network, whereas the AH environment challenges are related to the network functions such as routing,

switching, security, accounting and billing, and other such operations required for the functioning of network

routing.

One of the main challenges in the NFV is resource exhaustion. The software that uses a particular physical

server’s resources intensively may exhaust those resources and hence affect VM availability. This condition

occurs because the shared environment in a physical server magnifies the severity of resource contention,

especially when multiple VMs are running the same resource-intensive software at the same time. This

problem can be addressed by using SDP in which the SDP controller defines and implements a standard

operating procedure that detects VMs that are throttled due to resource exhaustion—similar to Denial of

11 J. Singh, A. Refaey and J. Koilpillai, "Adoption of the Software-Defined Perimeter (SDP) Architecture for Infrastructure as a Service," in Canadian Journal of
Electrical and Computer Engineering, vol. 43, no. 4, pp. 357-363, Fall 2020, doi: 10.1109/CJECE.2020.3005316.

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 18 of 33

service—and puts a remedy in place dynamically. Another common risk in the NVF is account or service

hijacking through the self-service portal or cloud management console, in which access to the portal or

console increases exposure to risks such as account or service hijacking through more administrative

privileges than are typically granted to end-users . In this case, the SDP shows a vital role in eliminating this

risk and using administrative controls selectively, based on users’ roles and functions.

There is widespread adoption of Software-Defined Networks (SDN) by Cloud Service Providers to simplify network

management. The main challenges of SDNs are how to provide proper authentication, access control, data privacy,

and data integrity among others for the API-driven orchestration of network routing. Herein, the Software Defined

Perimeter (SDP) can provide orchestration of connections that restricts network access and connections between

objects on the SDN-enabled network infrastructures.

There are several potential benefits as a result of the

integration between SDPs and SDNs. In particular, it

provides a completely scalable and managed security

solution.

In short, consider the Software-Defined Network (SDN)

and the Network Function Virtualization (NFV) as two

sides in a network virtualization triangle, the

Software-Defined Perimeter (SDP) completes the

missing piece of this triangle. Even though, both SDN

and SDP operate in the networking arena and have

similar names, the SDN can be considered as the brain

which orchestrates network operations, while the SPD

introduces reliable network connectivity with zero trust

concepts without significant obstruction.

Mutual Transport Layer Authentication Between Components

SDPs require multiple layers of validation throughout the connection establishment process. The first step is

SPA, as described above. The next step, which is the subject of this section, is the requirement for mutual

authentication as part of the establishment of a secure, encrypted connection between distributed SDP

components. (Additional steps, including device and user validation, are discussed below).

After components have utilized SPA to be validated and authorized, connections between the primary

components in an SDP system should use TLS or Internet Key Exchange (IKE), with mutual authentication, to

validate the device as an authorized member of SDPs. Specifically, the connections between the Initiating

Host and Accepting Hosts (IH-AH) and the Initiating Host to Controller (IH-Controller) must use mTLS, while

the connection and the Controller-Gateway connection should use mTLS.

All weak cipher suites and all suites that do not support mutual authentication are ill-advised and not secure.

This ensures that the components each contain a valid private key, issued by a trusted authority, significantly

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 19 of 33

reducing the likelihood of a Man-in-the-Middle attack .12

The root certificate for these components must be an enterprise PKI system or an SDP-specific CA. It must not

rely on pre-issued or implicitly trusted certificates associated with consumer browsers, which have been

subject to impersonation attacks whereby an attacker has forged a certificate from a compromised certificate

authority. SDPs should implement a scheme to ensure that revoked certificates can be detected efficiently,

such as using OCSP or another mechanism.13

Any SDP must be resilient to potential attacks - such as a MITM TLS downgrade protocol attack (which mTLS

avoids), as well as the potential for vulnerabilities associated with long-lived access tokens from authentication

systems such as SAML or OpenID Connect.

Device Validation
Mutual transport layer authentication proves that the device requesting access to the SDP possesses a private

key that has not expired and that has not been revoked, but it does not prove that the key has not been

stolen. The objective of Device Validation is to prove that the proper device holds the private key and that the

software running on the device can be trusted. In the simplest form of SDP described in this document, the

Controller is assumed to be a trusted device (because it exists in the most controlled environment) and the IHs

and AHs must validate it. SDP Gateways that aren’t also acting as accepting hosts are also assumed to be

trusted components as they are under the control of the enterprise operating the SDPs.

User devices, on the other hand, require validation. Device Validation mitigates credential theft and the

resultant impersonation attacks. The user’s device which has been authenticated with the SPA message is

allowed to connect to the SDP controller via the SDP gateway. This process ensures that an attacker will not

be able to access services on or behind the AH, even if the user is in possession of the correct private keys for

the connection. All packets are dropped from the user’s device unless authenticated and authorized via SDP,

thus preventing any incoming packets from all unauthorized user devices. Device validation protocols are

enterprise and product-specific, and as such are beyond the scope of the SDP specification

SDP systems must support the ability to integrate with enterprise device management / endpoint

management systems, and include their device posture checks into a device validation process. In addition,

SDP systems should support the ability to perform local device posture checks, in environments where the SDP

system has software running locally on the user device. For example, an SDP client could validate that a user’s

device contains a valid certificate issued by the enterprise. Or, it could validate that the device is running an

approved Anti-Virus component. Note that these aspects are related to the overall Zero Trust approach that

SDP supports -- using device information as additional context for making access policy decisions. Also note

that “devices” here can also refer to servers, which can and should be validated, in many of the same ways as

user devices.

13 https://tools.ietf.org/html/rfc6960

12 https://wott.io/blog/tutorials/2019/09/09/what-is-mtls

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 20 of 33

https://tools.ietf.org/html/rfc6960
https://wott.io/blog/tutorials/2019/09/09/what-is-mtls

SDP Protocol
The SDP protocol defined here comprises four sections: AH-Controller Protocol, IH-Controller Protocol, IH-AH
Protocol, and Logging, which are explained in detail below. The SDP protocol shown here illustrates the types of
communications between SDP components, but it is not normative - the different SDP deployment models will
necessitate different interactions and messages. The goal here is to show a representative system that works but not
to prescribe a fixed or standardized message format .

AH-Controller Protocol
Whatever network protocol is used for the communication between AH and Controller, and the type of network
connection, the following elements are essential:

1. Initiating request message - SPA
2. Secure message channel - secure TCP, VPN, etc. channel
3. Timeout function - for credential validity
4. Agreed format for authentication - MFA, etc.
5. Specific resource list to which the request is permissioned - list of protected AHs
6. Allow or deny response that satisfies the Zero Trust architecture of SDP - reject invalid SPA
7. Enables messages to be encrypted - secure TCP, VPN handshake
8. Enables validation of messages by a current HMAC function (Hashed Message Authentication Code) or

similar construct - SPA

AH to Controller Sequence Diagram

The sequence diagram for the protocol for the AH to connect to the Controller is as follows. A UDP-based

SPA packet is the first packet in order to ensure that the SDP Controller is protected from unauthorized

access.

Figure 7: Accepting Host connects to the Controller

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 21 of 33

The following subsections define the various messages and formats passed between the AH and

Controller. The basic protocol is of the form:

a. SPA
The request message is sent by the AH to the Controller to request a connection.

0x00 No command-specific data

The JSON specification for this as an example is:

Format Example

{“credentials”:
[“spa_encryption_key”:<64 bit>,

“spa_hmac_key”: <64 bit>,

“tls_key”: <file contents>,

“tls_cert” <file contents>

]
}

{“credentials”:
[“spa_encryption_key”:”aldskf…”,

“spa_hmac_key”: “asldjf…”,

“tls_key”: “tls_key”,

“tls_cert”: “tls_cert”

]
}

b. Login Request Message
The request message is sent by the AH to the Controller to indicate that it is available and is able to accept

other messages from the Controller.

0x00 No command-specific data

c. Login Response Message
The login response message is sent by the Controller to indicate whether the login request was successful and, if

successful, to provide the AH Session ID.

0x01 Status Code (16 bits) AH Session ID (256 bits)

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 22 of 33

d. Logout Request Message
The logout request message is sent by the AH to the Controller to indicate that it is no longer available and is not

able to accept other messages from the Controller. There is no response.

0x02 No command-specific data

e. Keep-Alive Message
The Keep-Alive message is sent by either the AH or the Controller to indicate that it is still active.

0x03 No command-specific data

f. AH Service Messages
The services message is sent by the Controller to indicate to the AH that set of services that this AH is protecting.

0x04 JSON formatted array of Services

The JSON specification for the data plane is:

ormat Example

{“services”:

[“port”: <Server port>,

“id”: <32-bit Service ID>,

“address”: <Server IP>,

“name”: <service name>

“session” : <session tag >

]
}

{“services”:

[“port”: “32843”,

“id”: “123445678”,

“address”: “100.100.100.100”,

“name”: “SharePoint”,

“session”: “HTTPS”

]
}

Note that this could be used to describe TCP or UDP-based services, or even services using other protocols (e.g. ICMP).

g. Reserved for Private Use
This command (0xff) is reserved for any non-standard messages between the AH and the Controller.

0xff User-specified

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 23 of 33

IH-Controller Protocol
The Initiating Host Controller Protocol operates on the network routing and packet delivery, and

implementation details depend on the type of transport (e.g., TCP guaranteed delivery or UDP fire and

forget). Whatever network protocol is used for the communication between IH and Controller, and the type

of network connection, the following elements are essential:

1. Initiating request message - SPA
2. Secure message channel - secure TCP, VPN, etc. channel
3. Specific authorized resource list - list of protected AHs
4. Enables messages to be encrypted - secure TCP, VPN handshake
5. Enables validation of messages by a current HMAC function (Hashed Message Authentication Code)

or similar construct - SPA

IH to Controller Sequence Diagram

Figure 8: Initiating Host connects to the SDP Controller

The following subsections define the various messages and their formats that are passed between the IH and

the Controller. The basic protocol is of the form:

Command (8-bit) Command specific data of command-specific length

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 24 of 33

a. SPA
The request message is sent by the AH to the Controller to request a connection.

0x00 No command-specific data

b. Open TCP Connection

The mutual TLS initiation sequence.

c. Login Request Message
The login request message is sent by the IH to the Controller to indicate that it is available and would like to

be part of the SDP.

0x00 No command-specific data

d. Login Response Message
The login response message is sent by the Controller to indicate whether the login request was successful and, if

successful, to provide the IH Session ID.

0x01 Status Code (16 bits) IH Session ID (256 bits)

e. Keep-Alive Message
The Keep-Alive message is sent by either the IH or the Controller to indicate that it is still active.

0x03 No command-specific data

h. IH Service Message
The services message is sent by the Controller to indicate to the IH the list of available services and the

IP addresses or hostnames of the AHs protecting them.

0x06 JSON formatted array of Services

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 25 of 33

The JSON specification is:

Format Example

{"services": [

{"address" : <AH IP>,

"id": <32-bit Service ID>,

"name": <service name>,

“type” : <service type> }

]
}

{"services": [

{"address" : “200.200.200.200”,

"id": “123445678”,

"name": “SharePoint”,

“type” : “HTTPS” }

]
}

i. IH Authentication Message
The role of the Accepting Host is to ensure that an authentication request is validated prior to allowing

access to the list of protected resources. The IH Authenticated Message is sent by the Controller to the AH

to indicate to the AH that a new IH has been validated and that the AH should allow access to this IH for the

specified services.

0x05 JSON formatted array of IH information

The JSON specification is:

Format Example

{“IH Authenticators”:

“IH”: <IH/Device Pair>,

“sid”: <32-bit IH Session ID>,

“seed”: <32-bit SPA seed>,

“counter”: <32-bit SPA Counter>

[“id”: <32-bit service ID>,

]
}

{“IH Authenticators”:

“IH”: “IH/DeviceID”,

“sid”: “4562”,

“seed”: “###”,

“counter”: ‘####’,

[“id”: “123445678”

]
}

j. Reserved for Private Use
This command (0xff) is reserved for any non-standard messages between the IH and the Controller.

0xff User-specified

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 26 of 33

IH-AH Protocol
The Initiating Host to Accepting Host Protocol operates on the network routing and packet delivery.

Implementation details depend on the type of transport (e.g., TCP guaranteed delivery or UDP fire and

forget). Whatever network protocol is used for the communication between IH and AH, and the type of

network connection, the following elements are essential:

1. Initiating request message - SPA
2. Secure message channel - secure TCP, VPN, etc. channel created dynamically to the service
3. Timeout - duration the channel persists or keep-alive

It is important to note that the connection is established dynamically to the service only after the IH is validated.
Until then the service is kept hidden by the AH.

IH to AH Sequence Diagram
A sample sequence diagram for the protocol between the IH and the AH is shown below. This sequence

diagram only describes the message sequence associated with the initial login. The messages sent when an IH

connects to a Controller are shown in the AH-Controller Sequence Diagram.

Figure 9: IH connects to an AH and then sends data to a Service

The following subsections define the various messages and formats passed between the IH and the AH.

The basic protocol is of the form:

Command (8-bit) Command specific data of command-specific length

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 27 of 33

a. SPA
The request message is sent by the AH to the Controller to request a connection.

0x00 No command-specific data

b. Open TCP Connection

The mutual TLS initiation sequence.

k. Open Connection Request Message
The IH sends the open request message to the AH to indicate that it would like to open a connection to a

particular Service.

0x07 Mux ID (64 bits)

l. Open Connection Type
The AH sends the open connection type message to the Service to initiate a data connection.

0x07 Mux ID (64 bits)

m. Open Connection Response Message
The open-response message is sent by the AH to the IH to indicate whether the open request was successful.

0x08 Status Code (16 bits) Mux ID (64 bits)

n. Data Message
The data message is sent by either the IH or the AH. It is used to push data on an open connection. There is no

response.

0x09 Data Length (16 bits) Mux ID (64 bits)

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 28 of 33

o. Connection Closed Message
The connection closed message is sent by either the IH or the AH. It is used to either indicate that a

connection has been closed by the AH or that the IH is requesting a connection be closed. There is no

response.

0x0A Mux ID (64 bits)

p. User-Defined Message
This command (0xff) is reserved for any non-standard messages between the IH and the AH.

0xff User-specified

Logging

Creating logs to determine the availability and performance of services and the security of the

server is a requirement of all systems and for a Zero Trust implementation.

Fields of a log message
All logs will have the following fields.

Field Name Meaning

time time at which log record was generated

name

human-readable name for the event. Note: do not include any mutable

data nuggets, such as usernames, IP addresses, hostnames, etc. That

information is contained in the additional fields of the log record already

and we don’t want to repeat them.

severity a severity for this event ranging from debug to critical (see below)

deviceAddress the IP address of the machine generating the log record

Operations Logs
The following is a list of operational use cases or activities that need to be logged.

The signature_id is an identifier, making it possible to identify the type of event. The third column contains the

additional fields that need to be logged for the specific log messages.

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 29 of 33

activity signature_id data/information to log

component startup, shutdown,

restart (e.g., Controller coming

up, Host restart)

ops:startup

ops:shutdown

ops:restart

reason indicating why a restart or shutdown

has occurred

component indicating what component was

affected

connection between

components (Controller, IH,

AH, 3rd party component, DB)

up, down, reconnect

ops:conn:up

ops:conn:down

ops:conn:reconnect

src origin of the connection as an ip address as

seen by the reporting entity

dst destination of the connection as an ip

address as seen by the reporting entity

reconnect_count how many times

reconnect was attempted

reason indicating why the communication

went down

Here is a quick scenario that outlines a complete outage, showing what log entries are written where. In this

scenario, we assume that a Controller goes down:

The controller goes down [no log, a failing component is not able to log]

IH tries to reconnect to Controller n times

ops:conn:reconnect log messages

After n times, the client declares the connection to the Controller to be down and it looks for a new

Controller

ops:conn:down log message, with a severity of the error

IH connects to the newly found Controller

ops:conn:up log message

If no more Controllers are available

ops:conn:down log message, with a severity of critical

Another similar case would be a client that goes down without warning (e.g., laptop being closed). In that

case, the Controller would detect a failing connection, as well as the AH. Each of them would log a

ops:conn:down log message, with a severity of the error

Here is an example of how a complete user login (IH connecting to AH) looks:

IH connects to Controller

ops:conn:up log message

IH mutually authenticates to Controller

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 30 of 33

sec:auth log message

IH connects to AH

ops:conn:up log message

IH mutually authenticates to AH

sec:auth log message

Security/Connection Logs

The security logs are core to the SDP and are also going to be important in a broader context to detect

larger-scale infrastructure attacks. Therefore, these logs are very useful if forwarded to a SIEM product and

required for a Zero Trust implementation.

The signature_id is an identifier, making it possible to identify the type of event. The third column contains the

additional fields that need to be logged for the specific signature_id.

activity signature_id data/information to log

AH login

success

sec:login src the IP address of the AH as seen by the Controller

AH Session ID the session ID of the AH

AH login

failure

sec:login_failure src the IP address of the AH as seen by the Controller

AH Session ID the session ID of the AH

IH login

success

sec:login src the IP address of the IH as seen by the Controller

IH Session ID the session ID of the IH

IH login

failure

sec:login_failure src the IP address of the IH as seen by the Controller

IH Session ID the session ID of the IH

component

authentication

(e.g., IH ->

Controller)

sec:connection
IH Session ID the session ID of the IH

AH Session ID the session ID of the AH

denied

inbound

connection

sec:fw:denied src source of the attempted connection

dst destination of the attempted connection

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 31 of 33

Summary

Version 2.0 of the Software-Defined Perimeter (SDP) Specification has been a long time in coming. Version 1.0 was

published seven years ago in April 2014.

The version 2.0 specification expands and modifies (clarifications and extensions) the following areas:

● SDP Relationship to Cloud Layers

● Onboarding workflows

● Non-Person Entities

● Secure Message Channel

Additionally, we have provided enhanced sequence diagrams and explanation of connections and messages in the

following 3 SDP sub-protocols:

● AH to Controller

● IH to Controller

● IH to AH

Some of the topics that the SDP WG is considering for future research and publication are as follows:

● SDP’s role in granting ZT Network access in a Secure Access Service Edge (SASE) security model

● SDP in the Cloud for consumers and SDP for Zero Trust

● Device Validation

● Describe transport layer protocols supporting role in Zero Trust

● Access via Policy decision point (PDP) and corresponding policy enforcement point (PEP)

SDP is an effective Zero Trust implementation. This specification will encourage a Zero Trust paradigm shift for14

securing applications particularly in the cloud where Service Level Agreements (SLAs) favor the service providers, by

giving consumers of cloud services more visibility into their security while developing cloud and/or hybrid

applications.

SDP is also proven to secure internal Enterprises[1], Infrastructure as a Service offerings[2], Network Function

Virtualization[3], Software-Defined Networking[4], and IoT applications[5].

[1] P. Kumar, Abdallah Moubayed, Ahmed Refaey, Abdallah Shami, and Juanita Koilpillai “Performance Analysis of SDP for Secure Internal
Enterprises," IEEE Wireless Communications and Networking Conference (WCNC), 1-6, 2019.
[2] J. Singh, A. Refaey and J. Koilpillai, "Adoption of the Software-Defined Perimeter (SDP) Architecture for Infrastructure as a Service," in Canadian
Journal of Electrical and Computer Engineering, vol. 43, no. 4, pp. 357-363, Fall 2020, DOI: 10.1109/CJECE.2020.3005316.
[3] J. Singh, A. Refaey and A. Shami, "Multilevel Security Framework for NFV Based on Software Defined Perimeter," in IEEE Network, vol. 34, no.
5, pp. 114-119, September/October 2020, doi: 10.1109/MNET.011.1900563.
[4] Ahmed Sallam, Ahmed Refaey, and Abdallah Shami, " On the Security of SDN: A Completed Secure and Scalable Framework Using the Software-Defined
Perimeter," IEEE Access, Accepted, August 2019. (Impact factor: 4.098).
[5] Refaey, A.; Sallam, A.; Shami, A.: 'On IoT applications: a proposed SDP framework for MQTT', Electronics Letters, 2019, 55, (22), p. 1201-1203,
DOI: 10.1049/el.2019.2334IET Digital Library, https://digital-library.theiet.org/content/journals/10.1049/el.2019.2334

14 https://www.helpnetsecurity.com/2020/05/29/sdp-zero-trust/
© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 32 of 33

References

Cloud Security Alliance (CSA), SDP Architecture Guide version 2.0, published May 2019, available @
https://cloudsecurityalliance.org/artifacts/sdp-architecture-guide-v2/

Cloud Security Alliance (CSA), SDP Glossary, published June 2018, available @
https://downloads.cloudsecurityalliance.org/assets/research/sdp/SDP-glossary.pdf

Cloud Security Alliance (CSA), SDP as a DDoS Defense Mechanism, published October 2019, available @
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-as-a-ddos-prevention-mechanism/

Waverley Labs, SDP Center, Open Source Reference Implementation (funded by DHS), available @
http://sdpcenter.com/test-sdp/

Cloud Security Alliance (CSA) Software-Defined Perimeter (SDP) Specification 1.0, published April 2014,

available@ https://cloudsecurityalliance.org/artifacts/sdp-specification-v1-0/

Zero Trust Security: An Enterprise Guide, by Jason Garbis and Jerry W. Chapman, Apress, 2021, available @

https://www.apress.com/us/book/9781484267011

Zero Trust Networks: Building Secure Systems in Untrusted Networks, by Evan Gilman and Doug Barth,

O’Reilly, 2017, available @ https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/

© Copyright 2021, Cloud Security Alliance. All rights reserved. Page 33 of 33

https://cloudsecurityalliance.org/artifacts/sdp-architecture-guide-v2/
https://downloads.cloudsecurityalliance.org/assets/research/sdp/SDP-glossary.pdf
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-as-a-ddos-prevention-mechanism/
http://sdpcenter.com/test-sdp/
https://cloudsecurityalliance.org/artifacts/sdp-specification-v1-0/
https://www.apress.com/us/book/9781484267011
https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/

