2019年10月,党的十九届四中全会决议通过《中共中央关于坚持和完善中国特色社会主义制度 推进国家治理体系和治理能力现代化若干重大问题的决定》将数据列为生产要素。继土地、劳动力、资本、技术后,数据作为第五类生产要素。(注解:生产要素可以进行市场交换,形成各种生产要素价格与体系,并由此形成要素市场)。
2020年4月,中共中央、国务院出台《关于构建更加完善的要素市场化配置体制机制的意见》,明确要求推进政府数据开放共享、提升数据资源价值、加强数据资源整合与安全保护,加快培育数据要素市场。除此之外,全球其他国家或地区近年来相继出台法规政策以在国际上争夺数据主权。
时势造英雄 隐私科技
何为“隐私科技”
从技术角度出发,隐私科技涵盖了众多隐私计算技术,以安全多方计算为代表的基于密码学的技术、以联邦学习为代表的基于人工智能与算法的技术,以及以可信计算为代表的基于硬件环境的技术。
从应用场景角度出发,隐私科技主要解决以下三方面的问题:隐私合规、隐私数据安全、数据可用。
从产品角度出发,解决组织的隐私合规问题的数据可视化工具、隐私合规影响评估工具;解决组织的数据安全与可用的问题,以可信计算/联邦学习框架等为代表的技术类产品与服务。
隐私科技相关技术
隐私合规影响评估
隐私设计
多方安全计算
多方安全计算技术体系框架
联邦学习
从数据安全和隐私保护的角度看,在联邦学习框架下,各参与方只交换密文形式的中间计算结果或转化结果,不交换数据,保证各方数据不出本地节点。联邦学习分为三类,即横向联邦学习、纵向联邦学习和迁移联邦学习。
可信计算
ARM CPU结构示例
同态加密
区块链
差分隐私
如上图,攻击者能够从带噪的结果反推得到带噪中间件,他也不可能准确推断出无噪中间件,更不可能对原数据库进行推理,从而达到了保护隐私的目的。
匿名化/假名化技术
匿名化技术可以实现个人信息记录的匿名,数据匿名化是模糊化信息的过程,使这些信息无法用于识别个人。
假名化技术将身份属性的值重新命名,如将数据库的名字属性值通过一个姓名表映射,通常这个过程是可逆。
隐私科技的发展与行业应用
隐私科技的发展与行业对于隐私保护的需求趋势也是密不可分的。数据最小化、数据分级分类及数据匿名化都是近一两年来随着相关法律法规出台所带来的热点合规需求,如何从技术层面满足这些需求也促进了隐私科技的发展。
以实现产品和服务目的为标准,在功能可实现的前提下在最小范围内收集数据。
综合考虑数据属性、特点、数量、质量、敏感度等因素,对数据资源进行分类分级,梳理出非敏感、低风险等级、权属相对明确的数据资源,以要素形式优先进入数据交易市场,同时明确在市场交易过程中应配备的安全保护措施,可以在最大限度释放数据价值的同时,又兼顾数据安全和个人隐私的保护。
个人信息概念的界定是个人信息保护立法的核心问题和逻辑起点,关系到法律保护对象的范围。个人信息进行了匿名化处理,就不再具有个人信息属性。
我国隐私及数据安全保护内部控制体系情况
对中国隐私科技数据安全合规与保护现状介绍以及隐私科技行业应用场景分析,包括:金融行业-互联网信贷场景、医疗大健康行业数据共享场景、政务数据开放场景、零售与快速消费品行业、汽车行业、电信运营商等,详见2022年3月CSA大中华区发布的《隐私科技白皮书》。
隐私科技总结及展望
目前主流的隐私增强的底层技术如联邦学习、安全多方计算等,都存在一定的局限性。国内隐私科技产品目前还处于发展的早期阶段,且呈现较为明显的“两级分化”状态,即大厂与少数特定行业需求明确且成熟度较高,已提升到需要“硬核”的隐私科技技术解决常规管理手段及技术无法解决的合规问题,而大多数行业仍然处在为满足基本合规要求、通过“Excel”解决问题的阶段,这部分需求未得到有效满足。
在满足大多数用户基本需求的层面,可学习借鉴国外比较成熟的产品,结合国内用户的痛点与需求,打造中国版的一站式隐私合规科技产品。在相对高阶的“隐私计算”层面,探索不同的商业模式,如建立跨行业的底层技术与数据平台结合垂直行业的应用平台等,定位于打造未来数据融通交互的底层基础架构。
致谢
本白皮书由CSA大中华区隐私科技 工作组专家撰写,感谢以下专家的贡献∶
特别鸣谢
成果解读特邀嘉宾 徐震天 超过10年隐私保护和信息安全工作经验,曾为超过20家来自金融、零售&快消品、头部互联网等先锋行业企业提供隐私保护与信息安全咨询服务。 |